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HEAT-TRANSFER RATE AND PRESSURE MEASUREMENTS
OBTAINED DURING APOLLO ORBITAL ENTRIES

By Dorothy B. Lee, John J. Bertin,
and Winston D. Goodrich
Manned Spacecraft Center

SUMMARY

Measurements of local pressures and heating rates were made on the Apollo com-
mand module during entry from orbital velocities at Mach numbers from 28.6 to 11.5
on Apollo mission 1 and from 31. 2 to 2. 2 on Apollo mission 3. Flight pressure meas-
urements compared well with wind-tunnel results. Comparisons showed that laminar
and turbulent heat-transfer theories augmented by wind-tunnel data can be used to pre-
dict the heating to the conical section of the spacecraft. Analysis of the heat-transfer-
rate measurements indicated that transition to turbulent flow occurred on the conical
section at local Reynolds numbers between 20 000 and 102 000, based on distance from
the stagnation point. No valid heat-transfer data were obtained on the blunt entry face.

INTRODUCTION

The design of the thermal protection system for the Apollo command module was
based on theory augmented by wind-tunnel data. Final qualification of the system to
withstand entry from orbital missions required flight tests of the command module.
During the entry portion of the tests, local pressure and heat-transfer measurements
were obtained on the spacecraft. The trajectories for the flight tests were so chosen
as to subject the vehicles to a high heating-rate environment and to a high heat-load
entry. The first flight test, Apollo mission 1, was conducted with spacecraft 009 on
the Saturn IB launch vehicle. The spacecraft was launched from Cape Kennedy,
Florida, on February 26, 1966. After a flight of approximately 37 minutes, the com-
mand module landed near Ascension Island, and recovery was achieved approximately
3 hours later. The second flight test was conducted with spacecraft 011 on Apollo mis-
sion 3. This high heat-load test was launched with the Saturn IB vehicle on August 25,
1966, and later recovered in the Pacific Ocean near Wake Island.

Measurements of local pressure and heating rates were obtained with pressure
transducers and surface-mounted calorimeters installed on the command module. Data
were obtained at free-stream relative velocities between 25 300 and 12 000 ft/sec on
spacecraft 009 and between 27 300 and 2080 ft/sec on spacecraft 011. Histories of the
measured pressures and heating rates compared with theoretical predictions and with



wind-tunnel results are presented in this report. Data from some of the wind-tunnel
tests are given in references 1 to 6.

SYMBOLS

h enthalpy, Btu/lb
M Mach number
Pr : Prandtl number
p pressure, psia
Py total pressure behind normal shock, psia
. , 2
q heating rate, Btu/ft"-sec
dt =0 stagnation-point heating rate at zero angle of attack, Btu/ftz—sec
R command module maximum radius measured from the Xc—axis, 6.417 ft
RI < local Reynolds number based on distance from flight stagnation point
S distance measured from center of aft compartment, ft
t time, sec
\% velocity, ft/sec
Xc’ Yc’ ZC command module body coordinates, in.
X -distance measured from flight stagnation point, {t
a . angle of attack, deg
e angle about the command module Xc-axis, deg
u viscosity, lb/ft-sec

. 3
p density, 1b/ft



Subscripts:

aw adiabatic wall
CwW cold wall

D diameter

fp flat plate

lam laminar

turb turbulent

WB with blowing
w wall

2 local

0 free stream

SPACECRAFT CONFIGURATION AND FLIGHT TEST

Entry Vehicle

The general configuration of the Apollo command module is shown in figure 1.
The heat shield or thermal protection system, which covers the entire vehicle, is di-
vided into three parts: the aft compartment, the crew compartment, and the forward
compartment (fig. 1(a)). The aft compartment is a segment of a sphere with a radius
of curvature of 184. 8 inches. A toroidal section with a 7.7-inch radius forms the fair-
ing between the spherical segment and the crew compartment. As shown in fig-
ure 1(b), the crew compartment extends from the toroid-conical tangency point
at Xc = 23.2 inches to XC = 81 inches. The forward compartment extends from

XC = 81 inches to Xc = 133. 5 inches and is blunted to a 9. 1-inch radius. The maximum

body diameter of the command module is 154 inches and the axial length is 133.5 inches.

Instrumentation

Pressure transducers and surface-mounted calorimeters were installed on the
command module to measure the local pressures and the heat-transfer rates on the
vehicle. The locations and ranges of these sensors, which were the same for both
spacecraft, are given in table I and are shown in figure 1{c). Sensors that did not op-
erate or that gave questionable data are indicated by solid symbols in figure 1(c) for
spacecraft 009 and in figure 1(d) for spacecraft 011.



Two types of calorimeters were used to measure heating rates on the spacecraft.

Asymptotic calorimeters, designed to measure heating rates less than 50 Btu/"ftz-sec,
were located on the conical section. The design of these instruments is shown sche-
matically in figure 2(a) and the principle of operation is discussed in reference 7.
High-range slug calorimeters, developed specifically for the Apollo Program, were

located on the aft compartment to measure heating rates greater than 50 Btu/ftz—sec.
These slug calorimeters consist of several graphite wafers that are stacked to allow
continuous heating measurements during recession of the surrounding ablator. The
detail of one such wafer is shown schematically in figure 2(b). The wafer temperature
and the rate of change of temperature are used to determine the heat flux to the sur-
face. The operation and design of these calorimeters are discussed in reference 8.

Flight measurements were recorded on magnetic tape on board the spacecraft.
A malfunction occurred in the electrical power subsystem on spacecraft 009 that re-
sulted in permanent loss of heating-rate data approximately 86 seconds after initiation
of entry. Heating data were obtained for the entire entry time of spacecraft 011.

Entry Trajectory

The desired high-heating-rate entry was achieved with spacecraft 009 entering
the atmosphere at a flight-path angle of -9.03° and at a velocity of 25 173 ft/sec meas-
ured relative to the earth. Initial entry conditions, asst ned to occur at an altitude of
400 000 feet, correspond to 1565. 6 seconds after launch. The histories of altitude and
velocity for spacecraft 009 are given in figure 3(a), and the atmospheric densily used in
the data analysis is given in figure 3(b). The calculated Mach number and total pres-
sure are shown in figure 3(c).

The high-heat-load entry was achieved with spacecraft 011 entering the atmos-
phere at a relatively shallow flight-path angle of -3.53° and at a velocity of 27 200 ft/sec
measured relative to the earth. Initial entry conditions occurred at 4348 seconds after
launch. The trajectory parameters and the ambient conditions during entry of space-
craft 011 are shown in figure 4.

RESULTS AND DISCUSSION

Flow Patterns of Spacecraft 009

Asymmetric flow patterns were observed on spacecraft 009 because of the rolled
attitude of the vehicle. Accelerometer data showed that spacecraft 009 entered at an
angle of attack of 19.7° to 21. 3° until 1649 seconds after launch, when the vehicle be-
gan rolling rapidly. For an angle of attack of 20°, wind-tunnel tests indicated that the
spacecraft stagnation point should be located approximately 50 inches from the center
of the aft compartment on the +Z-coordinate axis at » = 90° (fig. 1(c)). However,
postflight examination of the streak pattern on the aft compartment of spacecraft 009
(fig. 5) revealed a rotation of approximately 10° in the flight pitch plane which may
have been caused by a lateral offset position of the center of gravity. Thus, the stag-
nation point was presumed to be in the +Zc to +YC quadrant at ¢ = 80°.



The effect of the rolled attitude on the conic: ection of spacecraft 009 can be
seen in figures 6(a) to 6(d). Examination of the char interface in the yaw plane (evident
in figs. 6(a) and 6(d)) reveals the asymmetry of the char pattern on the spacecraft. A
composite drawing from these photographs (fig. 7) illustrates the char pattern on the
conical section. The shaded area represents the surface which was charred during en-
try. Because the forward compartment was jettisoned before parachute deployment
and was not recovered intact, the region of charring is not defined for this compart-
ment. As seen in figure 7, the char pattern is rotated approximately 11° toward the
+Y-axis when measured at various points along the char interface. This angular dis-
placement corresponded to the flight pitch plane at 9 = 79°, which is consistent with
the flow patterns in figure 5.

In figure 7, the shaded areas on either side of the umbilical housing were found
to consist mostly of scorched paint and not of charred ablator material. A photograph
of this pattern is shown in figure 8.

Spacecraft 011 entered at an angle of attack of 18° and did not appear to have ex-
perienced off-nominal roll. The ablator on the conical section of spacecraft 011 was
not charred since the flow was separated over the entire conical region because of the
low angle-of-attack attitude during entry.

Pressure

Pressure distributions over the basic command module have been measured at
various angles of attack in several wind-tunnel facilities. Selected data have been
presented in reference 2 as the ratio of the measured pressure to the calculated total
pressure behind a normal shock. Faired curves of these pressure ratios are shown in
figure 9 for angles of attack of 18° and 20°. Estimates of flight pressures were made
by using these ratios and normal-shock calculations of total pressure for actual flight
conditions.

Spacecraft 009. - Flight-test data were obtained from 19 pressure transducers
(10 on the aft heat shield and nine on the conical section) on spacecraft 009. Histories
of the measured values are shown in figure 10. The measured pressures have not been
corrected for possible zero shifts, although it is evident that such corrections are ap-
propriate for several of the sensors. There is very good agreement between the flight
measurements and the estimates based on the wind-tunnel data for the aft heat shield
(figs. 10() to 10()).

The pressures on the conical section of spacecraft 009 (figs. 10(k) to 10(m)) were
measured with 3-psia transducers (minimum range available in suitable flight-qualified
sensors), although the maximum pressure was anticipated to be between 0.5 and
1.0 psia. As a result of the low magnitude of the measurements, the quantitative and
qualitative analyses of the data are limited. The pressure history measured immedi-
ately downstream of the windward scimitar antenna is shown in figure 10(k). The ir-
regular behavior of this pressure measurement suggests strong local influence of the
scimitar antenna on the flow. In figure 11, which displays the flow pattern around the
antenna, the sensor is indiscernible.



The pressure histories for most of the sensors on the toroid and conical sections
(figs. 10(1) and 10(m)) are in reasonable agreement with wind-tunnel predictions if cor-
rections for zero shift are considered.

The irregular drop in pressure that occurred at approximately 1635 seconds at
each measurement location on spacecraft 009 coincides with a drop in signal strength
noted on oscillograph records. Although full signal strength returned shortly after
1635 seconds, the signal faded again. As a result, the data obtained after 1660 seconds
were considered questionable and were subsequently discarded.

The flight pressure measurements shown in figure 10 were corrected for the es-
timated zero shift and then divided by the maximum pressure measured at S/R = 0. 72
in the stagnation region. The resultant pressure distribution is shown as bars in fig-
ure 12. The bars show the range of data in the Mach number interval M = 21.9 to 11.5
where the measured values were at least 50 percent of the full-scale reading. The
flight measurements are compared with wind-tunnel data obtained at a Mach number of
10 (ref. 2) for angles of attack of 20° and 25°. The flight measurements fall between
the two wind-tunnel curves, which differ most near the leeward corner. Although the
difference in the wind-tunnel curves was as much as 20 percent, only a 5-percent dif-
ference resulted in the calculated Reynolds numbers based on local conditions.

Spacecraft 011. - Flight-test data were obtained from 10 of the 12 pressure trans-
ducers on the aft compartment of spacecraft 011 and from one transducer located on the
toroid. No discernible pressure rise was detected and, in some cases, no data were
obtained on the conical section until just before parachute deployment.

The maximum pressure was measured at S/R = 0. 775, which is in the stagnation
region. The excellent agreement between this measurement and the calculated total
pressure is evident in figure 13. Pressure distributions for the pitch and yaw planes
of spacecraft 011 are shown in figure 14. The flight data have been normalized by the
maximum pressure measurement and compared with wind-tunnel distributions for the
Apollo command module at 18° and 20° angles of attack. The spacecraft changed angle
of attack during entry (ref. 9), and thus the two fairings are presented to illustrate the
small angle-of-attack effect on the pressure distribution. The comparison of the flight
data with the wind-tunnel pressure distribution is good considering the accuracy asso-
ciated with these measurements. This accuracy was assumed to be + 3 percent of full
scale, which resulted in a p/pt uncertainty as high as 0. 20.

Heating Rates

Wind-tunnel heat-transfer-rate measurements obtained on the smooth-body con-
figuration of the Apollo command module at various angles of attack are described in
references 1 and 2. Figure 15 shows wind-tunnel data obtained at o« = 18° and 20° ref-
erenced to the measured zero angle-of-attack stagnation-point value. These measured
distributions were used with a stagnation-point theory (ref. 10) to predict the cold-wall
laminar local heating rates over the surface of the command module during entry.
Turbulent heating to the aft compartment, the toroid, and the leeward conical section



was estimated using the theory advanced by Van Driest in reference 11 where the ratio
of turbulent to laminar heating is expressed as

i o v 3 0- 301
f‘lrbzo.055<2 4 > (1)

L
qla,m !

Turbulent heating to the windward conical section was estimated with the flat-plate
theory and expressed as

. i 0. 03Op?V2 (haw - hw) 2
Yurb, fp ~ Pr2/3( )1/5

R
LX

The local Reynolds number was calculated with the assumption of an isentropic
expansion from the stagnation conditions behind the normal shock to the local pressure
obtained from figure 9. For the predictions of flight heat-transfer rates, transition
from laminar to turbulent flow was assumed to occur at a local Reynolds number of
150 000 in attached flow and at a local Reynolds number of 20 000 in separated flow.

Aft compartment heating rates. - Six of the high-range calorimeters located on
the aft compartment of spacecraft 009 were operational, and temperatures of the outer-
most wafers were measured for approximately 54 seconds from the initial entry time.
An attempt was made to deduce heat-transfer rates from these measured temperatures
and from the thermal properties of the sensor. However, calibration tests showed
that heat losses to subsequent wafers and surrounding material were so large that anal-
ysis was impossible when only the temperature of the top wafer was monitored. There-
fore, no results from these sensors are presented.

Numerous malfunctions were observed in the wafer temperature measurements
on spacecraft 011. No meaningful data were obtained because of thermocouple shorting
and premature switching from each recording wafer.

Spacecraft 009 conical-section heating rates. - Histories of the heating rates
measured with the asymptotic calorimeters on the conical section are shown in fig-
ure 16. Predictions of heating rates based on theory and on wind-tunnel data are in-
cluded for comparison with the experimental flight data. The local Reynolds number is
shown above the heating-rate history.

The heating-rate histories shown in figures 16(a) to 16(f) show an apparently ir-
regular increase in heating between 1580 and 1595 seconds. All these sensors shared
a common recording circuit. Because the increase did not occur for the two sensors
(figs. 16(g) and 16(h)) that were connected to a different recording circuit, it is be-
lieved that an electrical disturbance in this circuit may have caused the irregular in-
crease. Some of the sensors indicated significant heating rates before entry when the



heating rate is known to be low. Because these rates approached values near zero after
the aforementioned irregularity, no corrections for zero shift were made. At the time
of maximum heating (1635 seconds), the main electrical buses began to show transient
excursions from nominal values. The excursions continued until approximately
1650 seconds, when an electrical short resulted in loss of data.

When the ablator is subjected to sufficiently high heating rates to cause charring,
local mass injection or outgassing must be considered in the data analysis. A charring
and ablation computer program, designated STABII (ref. 12), was used to calculate the
heat-transfer rates adjusted for blowing Iwp: These adjusted data are compared with

the flight data in figure 16. Where warranted, the data have been corrected for discon-
tinuous mass injection as presented in reference 13 and for nonisothermal wall effects
as discussed in reference 14. The corrections were 6 to 12 percent near the toroid
and 2 to 4 percent near the apex. Although the scatter of the data prevents precise
comparisons for most calorimeters, both flight measurements and theory show similar
characteristics at most locations.

The heating analysis for the spacecraft conical section can be classified accord-
ing to three areas: the windward and the toroid sections (both of which are in attached
flow) and the leeward conical section (which is in separated flow). On the windward
conical section (figs. 16(a) to 16(f)), the laminar cold-wall predictions adequately de-
scribe the flight data during the laminar portion of the flight. The flat-plate turbulent
theory (eq. (2)) adjusted for local blowing overpredicts the measurements obtained
near the scimitar antenna (figs. 16(a) and 16(b)) but is in excellent agreement with the
data obtained farther downstream (fig. 16(d)). Transition was observed at a local
Reynolds number as low as 40 000 in this attached-flow region. The low level of heat-
ing at the apex suggests that the flow is separated when the command module is at a
20° angle of attack.

The toroid is in a region of rapidly accelerating flow and experiences severe
pressure and heating gradients. Histories of the measured heating rates for the toroid
area are shown in figures 16(g) and 16(h). The slope change observed in the measure-
ments is presumed to be caused by the onset of transition and corresponds to a local
Reynolds number of approximately 30 000 at both locations. The temporary loss of
data indicated in figure 16(h) occurred when the heating rates exceeded the sensor de-

sign limit of 10 Btu/ftz-sec.

The leeward conical section, which was in separated flow, remained uncharred.
Therefore, the cold-wall predictions shown in figures 16(i) to 16(p) were not adjusted
for blowing. At all of the locations except the one near the apex (fig. 16(p)), the lami-
nar predictions based on 2 percent of the stagnation-point theory adequately describe
the flight data. Where the data exceed the laminar predictions, the turbulent theory
(eq. (1)) is adequate for the separated-flow region. The flat-plate turbulent theory
(eq. (2)), even when lowered by 60 percent to account for separated flow, yielded heat-
ing rates that were 3 to 4 times the measurements. Curves obtained from the two
theories are shown in figure 16(i). Transition on the leeward conical section was ob-
served to occur at local Reynolds numbers varying from 40 000 to 102 000. No transi-
tion was observed at some measurement stations even though local Reynolds numbers
were as high as 270 000. The higher heating near the apex (fig. 16(p)) may be due to
crossflow or wake effects.



Spacecraft 011 conical-section heating rates.- Histories of the heating rates
measured on the conical section of spacecraft 011 are shown in figure 17. The low
magnitude of the measurements at all locations suggests that the flow was separated
over the entire conical section. The spacecraft entered at an angle of attack of 18°,
which is consistent with the possibility that the windward side was at the threshold of
flow attachment. The wind-tunnel data shown in figure 18 as a function of angle of
attack illustrate the effect of separated and attached flow on the heating. The dashed
line at 18° denotes the extent of measured separated flow as a function of angle of at-
tack. The separated-flow laminar predictions of 3.5 and 4 percent of stagnation-point
theory are in excellent agreement with the measurements on the windward conical sec-
tion (figs. 17(a) to 17(f)) during the first heat pulse. The flat-plate turbulent theory
adjusted for separated flow agrees closely with measured values during the second
pulse. Transition was assumed to occur at a local Reynolds number of 20 000. The
spacecraft changed angle of attack during entry, increasing from 18° to 20°, which
may have caused the flow to attach to the windward conical section after the peak of the
second heat pulse. A history of the total angle of attack obtained from the accelerom-
eter data (ref. 9) is shown in figure 19.

The measured values shown in figure 17(g) were obtained on the windward side of
the conical section. Although the wind-tunnel-based prediction of 3 percent of
stagnation-point theory is twice the measured value during the first heat pulse, the
wind-tunnel data are of the same magnitude as the flight data during the second heat
pulse.

The measured values obtained on the toroid (figs. 17¢h), 17(i), and 17(n)) indicate
the flow remained laminar throughout the heating portion of the entry. The cold-wall
laminar predictions agree very well with the flight data. The temporary loss of data
noted in figure 17(i) occurred when the heating rates exceeded the sensor design limit

of 3 Btu/ftz—sec.

All of the leeward conical measurements, with the exception of the one near the
apex (fig. 17(s)), fall below the predicted values based on 2 percent of stagnation-point
theory. In general, the measurements were less than or equal to 1 percent of the
stagnation-point theory during the first pulse. The turbulent theory of equation (1) ade-
quately describes the heating rates that exceed the laminar theory. The flat-plate
theory of equation (2) adjusted to account for separated flow was found to be conserva-
tive. The theoretical assessment of the leeward conical heating is illustrated in fig-
ure 20, which shows representative data from both spacecraft as a function of local
Reynolds number. A transition Reynolds number criterion is not immediately discern-
ible from figure 20. However, examination of the data for discrete locations reveals
that transition could occur at local Reynolds numbers as low as 20 000 and as high as
52 000. The scatter in the data shown in figure 20 may be due to the use of the wetted-
length Reynolds number when the separated-flow pattern obviously does not follow the
spacecraft surface. Thus, such a Reynolds number length may be inappropriate.

Effects of reaction control system on heating. - The heating-rate spikes that can
be observed in the leeward measurements on spacecraft 011 were found to correspond
to the times of the reaction control subsystem (RCS) firings. During entry, the RCS
performed several roll maneuvers to control and guide the spacecraft to a predeter-
mined landing target. The momentary response of the asymptotic calorimeters on




spacecraft 011 showed heating rates as high as 5 times that measured between firings.
The momentary increase amounted to only a 10-percent increase in the heat load. The
control firings performed on spacecraft 009 during the heating portion of the entry were
negligible.

CONCLUSIONS

Local pressure and heat-transfer measurements were obtained on the Apollo
command module during entry from orbital velocities. Comparisons of the flight meas-
urements with theoretical predictions and with wind-tunnel measurements yield the fol-
lowing conclusions.

1. Flight data verify that wind-tunnel measurements provide a good description
of the pressure variations on the aft and conical section of the command module during
entry.

2. Heating rates measured with asymptotic calorimeters on the conical section
agreed with wind-tunnel measurements extrapolated on the basis of laminar theory.

3. Interpretation of heating rates measured in the charred regions of the ablator
requires consideration of local blowing or mass injection.

4. The turbulent heating rates are described adequately by the flat-plate theory
for the windward conical section and by Van Driest's theory for the leeward conical
section.

5. The data suggest that the transition Reynolds number may be appreciably
lower in attached-flow regions than the preflight predictions of 150 000.

6. The firings of the reaction control rocket engines located on the entry vehicle
were found to raise the heating rates momentarily to as much as 5 times the no-firing
condition; however, because the total firing times are short, the heat load was in-
creased by only 10 percent.

Manned Spacecraft Center
National Aeronautics and Space Administration
Houston, Texas, July 3, 1970
914-11-20-10-72
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TABLE 1. - LOCATIONS AND RANGES OF PRESSURE SENSORS

AND CALORIMETERS

(a) Aft compartment

Pressure sensor Calorimeter
Yc‘ ZC. Range, psia Yc’ Zc' Ran%e.
in. in. Spacecraft 009 | Spacecraft 011 in. in. Btu/ft ~sec
0 75 0to 10 Otobh 1.3 4.7 300
2.25 | -71.8 0to 10 Oto3 4.75 | -71.8 200
2.25 70.5 0to 17.5 Otob .0 71.8 300
71.8 -.8 0to 15 0to3 71.8 -3.25 200
0 58.4 0to 17.5 0Oto5 4.75 58. 4 300
54. 4 0to 17.5 Oto 5 -2.0 56.3 200
-2.1 35.2 0to 17.5 0to5 4.0 33.3 250
0 -35.0 0to 15 0to3 -2.17 -35.0 200
34.3 -2.1 0 to 15 Otob 39.0 4.6 200
-36. 17 -3.8 0to 15 0Oto5 -38.6 -5.17 200
6.0 -2.5 0to 15 Oto5 -.2 .6 250
42.4 45.9 0to 10 0to 5 41.1 44. 4 300
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TABLE I. - LOCATIONS AND RANGES OF PRESSURE SENSORS

AND CALORIMETERS - Concluded

(b) Conical section - Concluded

Pressure sensor Calorimeter
XC' (;e,g R;Islif ’ XC’ c;e’g Range.
in. in. Btu/ft -sec
26.5 91.8 0to 3.0 26.5 93.17 100
45.5 88.1 0to 3.0 45.5 85.3 50
62.3 93.4 0to 3.0 64. 8 92.0 50
78.9 118.2 0to 3.0 78.9 115.0 50
110.0 95.8 0to 3.0 114.0 83.4 50
25.3 136.1 0to 3.0 25.3 138.0 50
19. 4 271.6 0to 3.0 19.4 270.0 10
82. 6 219.8 0to 3.0 88.0 182.9 25
19. 4 177.0 0to 3.0 19.4 178.5 25
25.3 223.5 0to 3.0 25.3 225.5 10
78.9 187.9 0to 3.0 78.9 191.3 25
37.5 215.3 0to 3.0 40.0 215.3 10
78.9 263.9 0to 3.0 78.9 267.8 25
114.0 275.0 0to 3.0 114.0 265.0 25
45.5 226.0 0to 3.0 51. 7 229.8 10
59.0 142. 8 0to 3.0 61.5 142. 8 25
35.0 176.5 0to 3.0 35.0 178.6 25
57. 4 177.6 0to 3.0 60.0 177.5 25
70.5 271.9 0to 3.0 70.5 276.4 25
133.0 Apex 0to 3.0 133.0 Apex 25
58.0 232.0 0to 3.0 58.0 234.0 25
27.1 253.0 0to 7.0 27.1 253.0 25
32.6 253.0 0to 7.0 32.6 253.0 50
32.6 253.0 0to 7.0

14
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(a) Leeward view of the command module configuration.
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Figure 1. - Apollo entry vehicle.
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Figure 1. - Continued.

16



‘panuijuo)) - 1 9Jansiyg

*600 1J7ex230eds JO UOTIDAS [BITUOD
pue juswiIedwod }JB Y} U0 SUOTIBIO] J9)OWIIO[ED pUE I0SUIS aanssadd (D)

uoI3398s |edluogd juawiedwod Hy

UNI
o0LC

| I

oFT 02T 00T 08 09 Ob 02 0 <06 =8
U 7+
(10SUas aAljesadout
$3IBDIPUI |OQUWAS P31 )
12wnoied O
2Inssarg O

17



‘papnjouo) - °1 aJandrg

‘110 1Fe109deds Jo uO1}09S
1BO1UOD pue jus)Iedwiod JFe 9Y) U0 SUOIJedO] J9}9WILIO[ED pUE JOSUIS 9INSSIIJ (p)

Enass e ba na! t J% T 1 1 T I i
; ot jaah anal i at T
(erep ajqesnun Jo J0Su3s ! ! - —= ESRiid: asess
H TT T b i { T +
aAljesadour sajeatpul joquwAs pajity) : EiE Sonas Sases SasammmusneyaRassanRan o
S 6 ; e sesaen: T e aase: :
sepuoe) ] 2y : 2 2aaaan: _ T t
. t T
qu : Sasaassssis: 2 juswtedwod Yy
anssaid O _ : 25siRass! N
+ ana BSEss cbil Gani LW 1 T ! T
- —_—— Aﬂ p mane out T baE: : T T -7
B ~ L I 3 —=11 T HHH o
U01399S [BIUONETTH o0L¢
I T hl . - e 1 T t 4
T hnsad i SETEUNTERENL TS g i 1
+ T ~ 11 — 1
! IS T p—
T M o T
m T L T I I
1 T
1 i I +1
1 1 )} ] 3T
s It ol B X T T b
e i 1
= zaias | ,
ass H JRE RGN ¥ BER T T
£ 1 ! BEEEE. 12 :
- aaesans X0 :
Snag 4 paal ] . Suhl T T 3
1 an 11 tf agal 1+l
“ T 1 T
¥ 11 T X H
" t
==l mmu 1 T n, % faas s 1
- su i 1 T a8 Ui HH I
1 s o
T in«u b 1 I
i T ) T:f:..m« 113
11 + E R
a2 : ” mpdy e £ 2ass
: " e P e, >I L Saus
Ly § T T, 8 | +++4
= Hr
- - I% ow 2
t ) parile -
] T :
! AT T3
! Eessi
am T 1 ! ¥
T T
T T
H -
88 T 4T
i H 2 H
. 1 J
; T 1 s o
ITI 1 T
) 18 1T 1 ) SEEE
T T
+ T
I T & uss Ht
T b 1 H 1 T 1
1 he ‘] I1 T T ¥44 3 1
zIO.VL Nf. o O it :
1 pRa s pa I 3 " 1
. 1 pa
1 T '
e + 1 T T 4
F T
L ». + +
t e it T T
HiD : i i :
EEat ot I : HHEE HAH :

18




‘SOYOUI Ul 8JB SUOISUSWLJ 110 PUB §00 }JeI09oeds U0 SI9IOWILIOTED JO D1JBWAYDS - g dINJ1J

‘J9jowlIoTed 2130)dutdsy (%)

Ta)
o
—

OOA%UOMQOOAVQODOHVQ

©

<> Q
oo a6 o e oY eI

N
OQ =

O/

yurs saddoy ‘

?0
o ()

QOgQOoQ&OQo

60

ooQQQQOQ%DD

DQ
a Qo

RIU0DIIZ

pe
9
M

—
ASIP [10) %Esmcou\\g 9¢ o|||q~ \ I\
s 10510y

82¢ 0

19



‘papniauo) - 'z 9ansdig

"Alquasse J1aJem 1939WLIOTRD afuea-ysig (q)

q6L0

burads wnipoyy

10)08]434 WNIpouy

3|dnodowaay) wniuayy- uaysbuny

—_)
// =
IR
£ ﬂl 10}B|NSU | / / 3
. 13)BM N
290°0 //7/523.7 N
) AN\
ayudeso <0 % ﬂ aPIXOIP WNIU0IAIZ
; 6070 |
; 050 . L
90

20



78S '}

0981 0281 08.1 oLl 0041

0991

£3100[9A WBDIIS-99d] 9ATIE[SI PUB 9PNV (B

0291

600 1yeI290eds Jjo suolIpuod Anjuy - ¢ aandi g

)

ovst

ig0T x 82

28s [l “ A

€

-1 001

0T X 00V

Y ‘apny

21



o, Ib/ft>

1% 1072 ST R SESNENSEREEEGE T :
/]

1% 107> P L

8 v

N
-4 7/ NN §izg

1x 107 | .
1% 107

- f 4

13

H
1% 107

1 i
1x 107/ l
1% 1078 EREESEE
y
1x 10-9 LU
1560 1600 1640 1680 1720 1760 1800
tl sec

(b) Free-stream density.

Figure 3. - Continued.



ptl pSia

14

12

10

32

; T
T
28 :
1]
T
I 1 } 1 t 6 IEEE|
+ 1 + t sasEs
Pt
24 : ‘ H
I
HHHHH }
:
i
% ings : g
; : t
; i
20 : :
T
8 o] : : i3t =
= L |Sas iun
H 1
HEH : :
16 : ;
i H
18 ngwel T
H i !
b I T
FHH 348 iadlated set
12 : HH : : ]
jassssadet in i 1 ey
I 3 1 § T
X1
5 i3 :
: o= HH
. mamu
L Hi + H
'r ’ : T
i N ;
:
8 T T
- 1.
P —tt T
T+ 1 =+
; H
; eRa
T wen
ot
4 BT o
SEREES feestia
:
.44‘{” I .
snpaignn
1 T 1 + -t T
T i I : ¢ I
0 232320888 8a8888 FHHEHE :

1560 1600 1640 1680 1720 1760

t, sec

(c) Total pressure and free-stream Mach number.

Figure 3. - Concluded.

1800

1840

23



24

Vo, ft/sec

400x 103

350

250 -

Altitude, ft

200 -

28x103

26 Lk

24

22

20

18

16

14

12

10

4300 4400 4500 4600 4700 4800 4900

Entry t, sec

(a) Altitude and relative free-stream velocity.

5000 5100

o

T

O N P N i 3 B - - - i insE H
4300 4400 4500 4600 4700 4800 4900

Entry t, sec

5000

(b) Free-stream Mach number and Reynolds number based on body diameter.

Figure 4. - Entry conditions of spacecraft 011.
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Figure 5. - Photograph showing streak patterns on aft heat shield
of spacecraft 009.
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(d) Y, 6= 180°.

Figure 6. - Concluded.
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Figure 10. - Time histories of pressures measured on spacecraft 009.
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Pressure sensor
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Figure 14. - Comparison of spacecraft 011 pressure distribution with
wind-tunnel results.
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Figure 20. - Leeward heating as a function of local Reynolds number.

NASA-Langley, 1970






